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ABSTRACT  

Lev Davidovich Landau was arguably one of the greatest and most 
versatile physicists. His work spans a very wide range and has had a 
considerable impact on all areas of physics including condensed matter 
physics, plasma, high energy and particle physics, fluid dynamics, 
astrophysics, gravitation, elasticity, etc. Along with his former fellow 
student, E Lifshitz, he wrote the set of a dozen volumes, the magnificent 
world-renowned Course of Theoretical Physics which covered topics 
ranging from mechanics, classical theory of fields, quantum mechanics, 
electrodynamics of continuous media, fluid dynamics, kinetic theory, 
theory of elasticity, statistical physics and more.  

 

 
 
 

Lev Davidovich Landau studied physics at 
Baku University and in Leningrad and 
graduated in 1927. From 1929-31, he visited 
various centres in Europe, including Gottingen, 
the Bohr Institute at Copenhagen and then 

Cambridge University to work with Paul Dirac.  
On his return in 1932, he became head of 

the theoretical division at the Ukrainian 
Institute at Kharkov, establishing the first 
school of theoretical physics in the former 
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Soviet Union, which soon received 
international reputation. In 1937, the eminent 
Russian physicist, Peter Kapitza who was then 
the director of the Institute for Physical 
Problems in Moscow, persuaded Landau to 
head the theory division at the Institute. 
Landau’s work spans a very wide range and 
has had a considerable impact on all areas of 
physics including condensed matter physics, 
plasma, high energy and particle physics, fluid 
dynamics, astrophysics, gravitation, elasticity, 
etc. 

Along with his former fellow student, E 
Lifshitz, he wrote the set of a dozen volumes,1 
the magnificent world-renowned ‘Course of 
Theoretical Physics’ which covered topics 
ranging from mechanics, classical theory of 
fields, quantum mechanics, electrodynamics of 
continuous media, fluid dynamics, kinetic 
theory, theory of elasticity, statistical physics 
and more. 

“There is hardly anything in physics 
which the authors have not mastered!”  

− Nature 

Some well known results of Landau’s work 
include:1,2  

 
1. Theory of liquid helium. Introduction of 

notion of quasiparticles. Superfluid helium 
as a quantum liquid. Phonons and rotons. 
Prediction of second, third, fourth and fifth 
sounds, zero sound. 

2. Ginzburg-Landau theory of super-
conductivity. Type II superconductors, 
maximum magnetic field, led to concept of 
magnetic vortices carrying quantized flux.  

3. Landau damping in plasma.  
4. Landau-Lifshitz equations for evolution of 

spin fields in ferromagnets. General theory 
of phase transitions.  

5. Landau levels in diamagnetism. 
6. Elasticity: Attenuation of shear waves in 

crystals, Landau-Rumer theory.  
7. Neutron star mass limit. 

8. High energy physics: Landau-
Pomeranchuk theorem; particle physics: 
two component theory of neutrinos, CP 
violation, Landau gauge, Landau poles. 

9. Gravitation: Landau-Lifshitz pseudo-
tensor for calculating energy of the 
gravitational field.  

10. Hydrodynamics: Theory of explosion, 
Landau-Darrieus instability (now applied 
to type Ia supernova). 

1. Theory of Liquid Helium 

Landau thought of superfluid helium 4 as a 
quantum liquid so that its atoms behave as if 
they were in the same quantum state. Their 
motions are highly correlated enhancing the 
physical properties of the superfluid state. He 
introduced the notion of quasiparticles, which 
act as carriers of motion in the liquid. This is 
an important concept applied in many other 
phenomena in condensed matter physics. (For 
instance, polarons in a crystal is electron 
‘dressed’ by the surrounding lattice 
deformation).  

The energy-momentum (dispersion) 
relation for elementary excitations in superfluid 
helium-4 has the following form: 

 

 
 
 
The long wavelength excitations are 

phonons with dispersion q sc qω = , where cs is 
the sound speed and q is the magnitude of the 
wave vector. These are the phonons.  
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In case of shorter wavelengths, the 
excitation spectrum has a local minimum. The 
excitations near this minimum are known as 
rotons and their dispersion relation is roughly 
described by: 

ωq ≈ Δ + α(q – q0)2 ,  α is a constant.  

Density of states 2( ) dqE q
dt

ρ ∝   

For wavevector near (minimum)  

q0, E  ≈ Δ + αk2 ,  

where,  

k = q – q0  

Defining  
2

2
m

α
= , 

by analogy with the non-relativistic relation  
2 2

2
kE
α

=  , 

we see that this describes free quasiparticles of 
mass m in a constant potential Δ.  

One can write a single roton wave 
function (using the NR Schrodinger 
equation). The binding of rotons is related to 
phenomenon of Cooper pairs in 
superconductors. Landau first predicted 
existence of a second sound in the 
superfluid. Unlike the usual first sound 
(which propagates pressure oscillations) 
second sound involves oscillations in 
entropy and is a temperature wave in the 
bulk superfluid.  
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This was observed experimentally in 1944, 
in Moscow, confirming many aspects of the 
two fluid model of liquid helium. The second 
sound velocity c2s involves the ratio of the 
superfluid to normal component ρn densities, 
that is ρs/ρn, and is given by:  

2
2
2

s
s

n

TSc
C

ρ
ρ

=   

where T is the temperature, S is the specific 
entropy and C is the specific heat.  

Above the so called lambda (λ) point, when 

there is no superfluid, 0s

n

ρ
ρ

= , so c2S = 0.  

Below about 1K, there is a rapid increase to 
value c2S = c1S/ 3 , where c1S is the usual first 

sound velocity having a value 2
1s

Bc
ρ

= , B is the 

bulk modulus and ρ the total density.  
The third sound occurs in very thin films 

and is given by: 

2
3 3

3s
sc

d
ρ β
ρ

=  

where d is the film thickness, β is the Van der 
Waal coefficient. Typically it is 140m/s.  

The fourth sound is a pressure wave 
propagating in superfluid helium confined to a 
porous material (like packed powders) and is 
given by: 

2 2
4 1

s
s sc c

ρ
ρ

=   

As 1sρ
ρ

→ , c4s → c1s   

This measurement (of c4s) can be used to 
give precise values of the superfluid fraction 

sρ
ρ

 as a function of T. We also have the fifth 

sound which is a temperature wave which can 
propagate in helium confined to a narrow 
orifice.  

It is analogous to the second sound except 
that only a superfluid component can flow and 
is a low velocity mode with a maximum of 
12m/s at about 2K and vanishes at the lambda 



 

point where ρn = 0  

2 2
5 2

n
s sc c

ρ
ρ

=  

Again when the sound frequency is 
increased to a value greater than the collision 
rate between helium atoms the wave changes to 
zero sound from first sound as first predicted 
by Landau (for He-3) and has quite recently 
been discovered. (For an account of the above 
phenomena, one can refer, for example, to 
Superfluid Hydrodynamics by S. Putterman 
(1974).)  

2. Ginzburg-Landau Theory of Super-
conductivity  
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Another famous contribution to condensed 
matter physics is the Ginzburg-Landau theory 
of superconductivity which is a mathematical 
way of describing properties of 
superconductors with the help of general 
thermodynamic arguments. It is especially 
useful for understanding Type II super-
conductors which can be thought of as a 
second order transition from normal to 
superconducting phase in a uniform magnetic 
field.  

The phase boundary line for the penetrating 
magnetic field HC(T) as a function of 
temperature can be calculated using the 
Ginzburg-Landau equation for the 
superconducting order parameter ψ(X), valid at 
all temperatures T < TC(so called field 
transition temperature).  

The equation is  
2

22 0zei A
c

ψ λ ψ β ψ ψ−⎛ ⎞Δ − + + =⎜ ⎟
⎝ ⎠

 

where  
1
2

0( ) 1
C

TT
T

λ λ
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

is the coherence length, A(x) is the vector 
potential. At the onset of superconductivity, 
number density of Cooper pairs, ns ∝ ψ*ψ, is 
small, so the last term in the Ginzburg-Landau 
equation (so called cubic term in ψ(x), which is 
a novel feature of the model, the relativistic 
version leading later to the so called Higgs 
model with its famous still sought after 
particle!) can be neglected.  

So we have domination by the external 
field with the substitution 

( ) ( ) y zik y ik zx x e eψ ϕ= , 

the equation can be shown to reduce to: 
2 2

2 2
2

1
2 2

d x E
m dx

ω φ φ
⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

, 

the equation for a SHO, with  

2eB
cm

ω =  

Given λ, the maximum allowed value of 
the magnetic field BBmax (corresponding to n =0, 
kz = 0) is  

2 max 2 2
0

1 1
2 2C

C

c cH B
e Teλ λ

⎛ ⎞⎛ ⎞= = = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

T . 

When the field exceeds BBmax, sample is no 
longer superconducting. The field is confined 
to vortices (the theory was later refined by 
Abrikosov), the radius of the vortex being λ, 

the quantum of flux being 
2
c
e

 (in fact the 

factor of 2 was already noted before Cooper 
pairs were postulated). So  

BBmax = 2 22
c

e
φ

πλ π
=

λ
.  

This has also been applied to neutron star 



 

magnetic fields (with pion condensation 
transition for example which gives a maximal 
interior field of 1016G). The Ginzburg-Landau 
theory is still of great relevance in 
understanding the new high temperature 
superconductors.  

Following the tradition of Landau being 
awarded the Nobel Prize in 1962, for his theory 
of liquid helium, Ginzburg and Abrikosov 
shared the 2003 Nobel Prize with Anthony 
Legett, for their detailed theoretical 
explanation of He-3 superfluidity.  

Also we note above that the electron 
motion in the z-direction given rise to 

quantized energy levels 1
2

eBn
mc

⎛ ⎞+⎜ ⎟
⎝ ⎠

, the so 

called ubiquitous Landau levels.  
A recent application has been to estimate 

neutron star magnetic fields from cyclotron X-

ray lines seen in the compact stars, eB
mc

 the 

gyro-frequency being in kilo-electron volts for 
such large magnetic fields.  

3. Landau damping in plasma 

In plasma physics, we have the famous Landau 
damping3,4 (a damping mechanism by which 
plasma particles absorb wave energy even in a 
collisionless plasma) which was experi-
mentally discovered in 1965 (by Malemberg 
and Whorton)5 20 years after Landau’s 
prediction.  

If the number of particles slightly 
slower than the phase velocity of the 
wave is larger than the number slightly 
faster, that is, if: 

0
0

0

0
∂
∂

<
f

v
v

, 

the group of particles as a whole gains energy 
from the wave and the wave is damped.  

On the contrary when  

0
0

0

0
∂
∂

>
f

v
v

,  

at v0 = ω/k, the particles give their energy to 
the wave and the wave amplitude increases. 
This showed that energy exchange processes 
are possible even in collisionless plasma. This 
phenomenon has found wide applications 
ranging from quark-gluon plasma to 
synchronous light flashing of fireflies! 

4. Landau-Lifshitz Equations for 
Evolution of Spin Fields in Ferromagnets 

Again we have the famous Landau-Lifshitz 
equations to describe the evolution of spin 
fields in continuum ferromagnets. They play a 
basic role in understanding non-equilibrium 
magnetism analogous to that if Navier-Stokes 
equation in fluid dynamics.  

The equation has the form: 

ext ext
1 2 ( )u u H u u H

t
∂ λ λ
∂

= × − × ×  

For a zero external filed, we have the 
dissipation (Gilbert term), λu×(u×Δu).  

There are several interesting solutions to 
the above equations in various contexts. The 
general theory of phase transitions was also 
developed (analogous to the Ginzburg-Landau 
theory). 

5. Landau Levels in Diamagnetism 

Landau also made an early contribution to 
diamagnetism. He calculated the diamagnetism 
of free electrons (vanishing classically by the 
Bohr-van Leeuwen theorem) quantum 
mechanically and for electrons in metals, the 
numerical value of Landau diamagnetism is 
1/3rd that of the Pauli spin paramagnetism (for 
bound electrons there is cancellation of 
diamagnetic and paramagnetic susceptibilities).  
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6. Landau-Rumer Theory 

In elasticity we have the Landau-Rumer theory 
which deals with the direct interaction of 
acoustic waves with thermal phonons. They 
showed that attenuation for propagating slow 
shear waves increases as the fourth power of 
the temperature.  

The attenuation coefficient was 

proportional 
3

2

1kT T
Mv θ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where λ is the 

wavelength, θ the Debye temperature and v the 
sound velocity.  

Experiments were in good agreement with 
the theory.  

7. Neutron Star Mass Limit 

Landau also obtained a mass limit6 for neutron 
stars which was the same as the Chandrasekhar 
limit. It was given as  

3
2

sun2~ 1.n
n

cM m
Gm

⎛ ⎞
=⎜ ⎟

⎝ ⎠
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5M  

Indeed many pulsars (including the Hulse 
Taylor binary) have just this mass! 

It is said that Landau got this result in 1932, 
very soon after he heard of Chadwick’s 
discovery of the neutron. He realized that this 
would be the ‘ultimate’ stellar core! (Matter 
only made of neutrons). Many Russian articles 
call this the Landau-Chandrasekhar limit.  

8. High Energy Physics 

In high energy physics, we have the Landau-
Pomeranchuk theorem, which states that the 
cross-sections for particle and antiparticle 
interactions should (with increasing energy) 
asymptotically approach the same value. After 
the discovery of parity violation in weak 
interactions, Landau (and independently Lee 
and Yang and Salam) proposed the two 

component neutrino theory, where the Weyl 
equation (rather than the Dirac equation) was 
the appropriate one for neutrinos.  

Landau also elegantly showed that an 
electric dipole moment for an elementary 
particle can exist only in the case when there is 
a violation of not only parity conservation (P) 
but also time reversal (T). This can be seen by 
defining electric dipole moment of a particle as 
follows: 

Let σJ be the charge density inside a 
particle with angular momentum J , with 
quantum number J, whose orientation is given 
by m = J relative to the z-axis through the 
centre of mass. Then 

Jed dVzσ= ∫ ,  

dV is the volume element.  
If particle is charged then this implies 

charge centroid does not coincides with mass 
centroid when d ≠ 0. For a particle like a 
neutron (uncharged), then d ≠ 0 corresponds to 
excess positive or negative charge in one 
hemisphere. To connect with CP, we see that if 
d = 0 there is symmetry under P and T (d does 
not change under T, but J does, so d must 
vanish if there is T symmetry). So if CPT is a 
good symmetry, T violation implies CP 
violation. Thus d ≠ 0 only if CP is violated.  

Landau pole occurs in the evolution of the 
(electromagnetic) coupling constant at a 
particular value of the momentum scale when 
perturbation theory breaks down and the 
coupling diverges. Thus:  

2
2

2( )
1 2

ee p
e pβ

− =
−

 
02

1
1 2 p
e

β
=

−
 

As p increases, e2 grows and diverges when 

2
0

1
2

p
eβ

→ .  



 

In the TT gauge (transverse-traceless 
gauge, where there are only two components) 
the second term in the angle brackets vanishes. 
This is the analogue of the Poynting vector 
describing the energy carried by 
electromagnetic waves.7  

For QCD, the behaviour is opposite, the 
coupling vanishes as the momentum tends to 
infinity.  

2
2

2
0

02

1( )
11 2 | | 2 | |

gg t
g p p

g
β β

= =
− +
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(p → ∞, g → 0) 

Landau gauge: For the gauge fixing term 

( )
2

a a a a
GFL Aμ

μ
λ φ φ ∂ φ= + ; 

(φa is the auxiliary field, λ is the gauge fixing 
parameter) 
λ = 0, corresponds to the Landau gauge.  

Again for the propagator  

2( ) ( 1)
ab

ab p piD p
p p

μ ν
μν μν

δ η λ
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

2  

λ = 0 is the Landau gauge, when propagator is 
transverse  
λ = 1 is the Feynman gauge, which makes the 
form simple, that is: 

2( )
ab

ab iD p
pμν μ
δ

νη= −  

9. Landau-Lifshitz Pseudo-Tensor  

A common prescription for the energy 
momentum tensor describing the energy 
carried by gravitational waves is the Landau-
Lifshitz pseudo-tensor 

4

, , , ,
1

32 2
G cT h h h

G
ω αβ

μν αβ μ ν μ νπ
= − h  

The energy flux density of the wave is 
given as: 

01 ,0 ,1
1

32
T h

G
hαβ

αβπ
=   

     = 
2 2

2 212
32 2 32

h h
G G

ω ω
π π

× × =  

Factor ½ comes from taking time average 
of square of an oscillating quantity, h is the 
wave amplitude, ω the frequency.  

If 

5

201 4

c
GT rπ=  (maximal flux), then at ω = 

1kHz, r =1kpc, we have h ~ 10–14, r = 1Mpc, 
we have. h ~ 10–17.  
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