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ABSTRACT 

 
 
 

Dirac delta function appears naturally in many physical problems 

and is frequently used in quantum mechanics. The paradoxical feature of 

the Dirac delta function is that it is not a function at all. Rather, it is 

symbol δ (x) which for certain clearly defined purposes can be treated as 

if it were a function. The Dirac delta function can be taken as the 

generalization of the Kronecker delta to the case of the continuous 

variables. The historical background and some interesting features of the 

Dirac delta function δ (x) are discussed in this note. 
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1. Introduction 

The delta functions appeared in the early days of 19th century, in works of the 

Poission (1815), Fourier (1822) and Cauchy (1823). Subsequently O Heaviside (1883) 

and G Kirchoff (1891) gave the first mathematical definitions of the delta functions.  

P A M Dirac (1926) introduced delta function in his classic and fundamental work on 

the quantum mechanics. Dirac also listed the useful and important properties of the 

delta function. The uses of the delta function become more and more common 

thereafter. We call δ (x) as the Dirac delta function for historical reasons, while it is 

not a function of x in conventional sense, which requires a function to have a definite 

value at each point in its domain. Therefore δ (x) cannot be used in mathematical 

analysis like an ordinary function. In mathematical literature it is known as 

generalized function or distribution, rather than function defined in the usual sense. A 

definitive mathematical theory of distributions was given by L Schwartz (1950) in his 

Theorie des Distributions. 

The Dirac delta function is used to get a precise notation for dealing with 

quantities involving certain type of infinity. More specifically its origin is related to 

the fact that an eigenfunction belonging to an eigenvalue in the continuum is non-

normalizable, i.e., its norm is infinity. 

2. Why did Dirac need the delta function? 

Now we discuss why did Dirac need the delta function? Let us consider an 

arbitrary quantum mechanical state a . We can represent it by an expansion in a 

complete set of orthonormal basis states ix  of a particular representation that is 

assumed to have n discrete basis states 
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nn xaxaxaa +++= ...............2211  ,                                 (1) 

where the orthonormality condition is      ijji xx δ=                                              (2) 

( ijδ  is Kronecker delta; ijδ  = 0 if i ≠ j and ijδ =1 if i = j). 

The (probability) amplitude of finding the state a  in the base state ix  is  

axii =ϕ                                                                     (3) 

Due to orthonormality of the ix , Eq. (3) gives 

ii a=ϕ                                                                          (4) 

i.e., the expansion coefficients (ai)defining a state a  in a particular representation 

are simply amplitudes for finding the arbitrary state in the corresponding basis state. 

Eq. (1) can be written as 

∑=
i

ii xaxa                                                           (5) 

We want now to see how these relations must be modified when we are dealing 

with a continuum of base states. For this, consider the motion of a particle along a 

line. To describe the state ψ  of the particle we can use the position representation. 

In this representation the basis states x  describe a particle to be found at x and are 

continuous and non-denumerable. The most general state is  

 .............................2211 ++= xaxaψ ,                                (6) 

which is in analogy with Eq. (1). Since the states x  are continuous we must replace 

sum in Eq. (5) by an integral, i.e., 

dxxxf∫= )(ψ  ,                                                                      (7) 

where f (x) is the amplitude of finding the particle at position x. The amplitude of 

finding the particle at position x’ is 
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dxxxxfxxf ∫== ')(')'( ψ  .                                                (8) 

This relation must be hold for any state ψ  and therefore for any function f (x). This 

requirement should completely determine the amplitude f (x’), which is of course just 

a function that depends on x and x’.  

Now problem is to find a function xx'  which when multiplied with f (x) and 

integrated over x gives the quantity f (x’). Suppose we take x’ = 0 and define the 

amplitude x0  to be some function of x (say g (x)) then Eq. (8) gives 

dxxgxff ∫= )()()0( .                                                           (9) 

What kind of function g (x) could possibly satisfy this? Since the integral must not 

depend on what values f (x) takes for values of x other than 0, g (x) must clearly be 0, 

for all values of x except 0. But if g (x) is 0 everywhere, the integral will be 0, too and 

Eq. (9) will not satisfied. So we are in a strange situation: we wish a function to be 0 

everywhere except at a point, and still to give a finite result. It turns out that there is 

no such mathematical function that will do this. Since we can not find such a function, 

the easiest way out is just to say the g (x) is defined by the Eq. (9), namely g (x) is that 

function, which makes Eq. (9) correct, and this relation must hold for any function 

(numerical, vector or linear operator). Dirac first did this and the function carries his 

name. It is written as δ (x). 

3. How δ (x−x0) look like? 

The Dirac delta function is defined not by giving its values at different points but 

by giving a rule for integrating its product with a continuous function (Eq. (9)), if the 

origin is shifted form 0 to some point x0 then Eq. (9) will be read as 

dxxfxxxf ∫ −= )()()( 00 δ .                                                    (10) 
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Obviously, the contribution to the integral in Eq. (10) comes only from x = x0 (i.e., 

only the first term in the Taylor expansion of the function f (x) around the origin x0.), 

as for all other values of the function is zero. This relation must hold for any function. 

To have an understanding of δ (x−x0), let us consider an arbitrary function that is 

non-zero everywhere except at point x0 where it vanishes: 

                                    f (x)   =  0                    at  x = x0 

   = non-zero,       everywhere else x = x0              (11) 

In this case Eq. (10) gives  

0)()( 0 =−∫ dxxfxxδ                                                     (12) 

Since Eq. (12) must hold for any arbitrary form of the f (x) outside of the point x0, we 

conclude that δ (x−x0) = 0, if x ≠ x0. Also from Eq. (10) δ (x−x0) = ∞, if x = x0.  Thus, 

we have                                    δ (x−x0)   =  0      if   x ≠ x0 

          = ∞     if x = x0                                          (13) 

If we choose f (x) = 1, then defining relation (10) gives 

1)( 0 =−∫ dxxxδ                                                              (14) 

i.e., the delta function is normalized to unity.  

All of these results show that the δ (x−x0) can not thought of as a function in usual 

sense. However, it can be thought of as a limit of a sequence of regular functions. 

Schematically the delta function looks like a curve shown in Fig. 1, whose width 

tends to zero and the peak tends to infinity keeping the area under the curve finite. 

This curve represents a function of the real variable x, which vanishes everywhere 

except inside a small domain of length ε  about the origin x0 and which is so large 

inside this domain that its integral over the domain is unity; then in the limit ε  → 0, 

this function becomes δ (x−x0). This curve may be visualized as a limit of more 
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familiar curves, e.g., a rectangular curve of height 1/ε and width ε  or isosceles 

triangles of height 2/ε and base ε. These are plotted in Fig. 2. The area under both the 

curves is 1 for all values of ε. In the limit ε → 0, the height becomes arbitrarily large 

and width shrinks to zero keeping area still 1. Thus these functions become Dirac 

delta function in the limit ε → 0. 

4. Representations 

As noted earlier, the delta function can be thought of a limit of a sequence of 

regular functions. An infinite number of sequences may be constructed. Here we give 

some frequently used simple representations of the δ (x−x0). 

(1) A representation of the δ (x) is given by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞→ x
LxLimx

L π
δ sin)(                                                                 (15) 

This function for any L looks like a diffraction amplitude with width proportional to 

1/L. For any L the function is regular. As we increase the value of L the function 

peaks more strongly at x = 0, and hence in the limit L → ∞ it behaves like the delta 

function. Further, at x = 0,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x
Lx

π
sin  ~ 

π
L

 and its value oscillate with a period 
L
π2

 

when x increases. 

Also               ∫
∞

∞−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1sin dx

x
Lx

π
 (independent of the value of the x) 

 and                 ∫
∞

∞−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)0(

sin
)( fdx

x
Lx

xf
π

.  

Thus the          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞→ x
LxLimx

L π
δ sin)(  has all the properties of a δ (x). 
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(2) Let us now consider the integral ∫
∞

∞−
dkeikx : This can be written as  

               ∫
−∞→

L

L

ikx
L

dkeLim  = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ − −

∞→ xi
eeLim

ikxikx

L
 = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞→ x

Lx
Lim
L π

π
sin

2  = 2π δ (x)  

⇒      ∫
∞

∞−
= dkex ikx

π
δ

2
1)(                                                                        (16) 

The above relation is an alternate representation of δ (x). Here we immediately note 

that δ (x) is simply the Fourier transform of the constant 
π2

1 . 

(3) Separating the real and imaginary parts in Eq. (16) we find 

                               ∫
∞

∞−
= dkkxx cos

2
1)(
π

δ                                                    (17)  

                                    ∫
∞

∞−
= dkkxsin

2
10
π

                                                    (18) 

Eq. (17) is one of the most commonly used explicit expressions for δ (x). 

(4) A useful representation of the δ (x) is 

2
)( xeLimx α

α π
αδ −

∞→
=                                                         (19) 

This is the normalized Gaussian function of standard deviation 
α2

1 , which tends to 

zero as α→ ∞. Its height is proportional to √α and it peaks at x = 0. 

Some useful representations that are encountered in various applications are 

(5)                                     ⎟
⎠

⎞
⎜
⎝

⎛

+
=

∞→ 22
1)(

α
α

π
δ

α x
Limx                                          (20) 

(6)                                     )()( x
dx
dx θδ = ,                                                             (21) 

where θ  (x) is the step function which is defined as a generalized function through  
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                                      θ (x)   =      0    for   x  ≤  0 

                                                 =      1    for    x  ≥  0 

The three-dimensional Dirac delta function can be written by generalizing the one-

dimensional function i.e.,  

 δ 3 (
→→

− 0rr ) = δ (x−x0) δ (y−y0) δ (z−z0)                                                  (22)  

with             1)()()()( 000
3

0
3 =−−−=− ∫∫∫∫

→→
dxdydzzzyyxxrdrr δδδδ  

and              )()()( 0
3

0
3

→→→→
=−∫ rfrdrfrrδ  

5. Delta function in physical problems 

The Dirac delta function arises naturally in many branches of science and 

engineering. To appreciate this, let us consider the divergence of function 
2
ˆ

r
rA =

→
 (a 

basic problem of electrodynamics)[1]. As shown in Fig. 3 
→
A is spreading radially 

outward and has a large positive divergence, but we get zero by actual calculation as 

shown below (in radial coordinates): 

( ) 01111.
22

2
2

=
∂
∂

=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=∇
→→

rrr
r

rr
A                                                     (21) 

The surface integral of 
→

A over a sphere of radius R centered at origin (r = 0) is  

∫ ∫∫∫ ===
→→ π π

πφθθφθθ
0

2

0

2
2

4sin)sin(1. ddddR
R

dsA                                 (22) 

On the other hand from divergence theorem, we have 

π4.. ==∇ ∫∫
→→→→
dsAdvA                                                                       (23) 
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Thus we are in a paradoxical situation, in which 0. =∇
→→
A but its integral is 4π. The 

source of this inconsistency lies at the origin, where the
→
A blows up, although 

0. =∇
→→
A everywhere except at the origin. From Eq. (23) it is evident that 

π4. =∇
→→

∫ dvA  for any sphere centered at origin irrespective of its size. Hence 

→→
∇ A. has a strange property that it vanishes everywhere except at the origin, and yet 

its integral is 4π. We also have the similar problem of a point particle: density (charge 

density) is zero everywhere except at its location, yet it’s integral i.e., mass (charge) is 

finite. No mathematical functions behave like this but we note that these are precisely 

the defining properties of the Dirac delta function (see Eqs 13 and 14). Hence these 

contradictions can be avoided by introducing the Dirac delta function; one can write 

                                                  )(4
ˆ

. 3
2

→→
=∇ r

r
r δπ  

6. Properties of the Dirac delta function 

We list below some properties of the Dirac delta function without assuming any 

particular representation. In fact, these properties are equations, which are essentially 

rules for manipulations for algebraic work involving δ (x) functions. The meaning of 

these equations is that the left and right hand sides when used as a multiplying factor 

under an integrand leads to the same results. 

(i) δ (x)  = δ (−x) 

(ii) δ* (x)  = δ (x) 

(iii) x δ (x) = 0 
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(iv) δ (ax)  = 
a
1 δ (x)                  (a > 0) 

(v) f (x) δ (x−a)  = f (a) δ (x−a) 

(vi) ∫ = )0()()( fxfxdxδ  

(vii) ∫ −=−− )()()( babxxadx δδδ  

(viii) δ’ (−x)  = −δ’ (x)            where  δ’ (x)  = 
dx
d δ (x)         

(ix) ∫ −= )0(')()(' fxfxdxδ  

(x) 
a

axaxax
2

)()()( 22 ++−
=−

δδδ           (a > 0) 

Further suggested reading: 

1) D J Griffiths, Introduction to Electrodynamics, Prentice Hall of India Private 

Limited, 1997 p. 46. 

2) R P Feynman, R B Leighton and M Sands, The Feynman Lectures on Physics Vol. 

III Quantum Mechanics, Narosa Publishing Housing, New Delhi, 1986 (See 

chapter 16). 

3) P A M Dirac, The Principles of Quantum Mechanics, Oxford University Press, IV 

Edition 1985, p 58. 

4) Ashok Das and A C Melissinos, Quantum Mechanics A Modern Introduction, 

Gorden and Breach Science Publishers, 1986. 
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